Explanation:
Earth rotates in prograde mation.As viewed from the north pole star Polaris.Earth turns counterclockwise,, the north pole is point in the northern,, Hemisphere where Earth's Axis of rotation meets it's surface
Answer:
What is C - when your front bumper is even with the front vehicles back bumper.
Explanation:
Good Luck
Answer:
(a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is
Explanation:
Given that,
Charge q₁ = -4.00 μC
Inner radius = 3.13 m
Outer radius = 4.13 cm
Net charge q₂ = -6.43 μC
We need to calculate the charge on the outer surface
Using formula of charge
The charge on the inner surface is q.
We need to calculate the electric field outside the shell
Using formula of electric field
Put the value into the formula
Hence, (a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is
Kinetic energy = 1/2 m v^2 = 1/2 x1.5 x10^-3 x 0.36
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:
where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)
A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr