The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s
Answer:
The resultant force on charge 3 is Fr= -2,11665 * 10^(-7)
Explanation:
Step 1: First place the three charges along a horizontal axis. The first positive charge will be at point x=0, the second negative charge at point x=10 and the third positive charge at point x=20. Everything is indicated in the attached graph.
Step 2: I must calculate the magnitude of the forces acting on the third charge.
F13: Force exerted by charge 1 on charge 3.
F23: Force exerted by charge 2 on charge 3.
K: Constant of Coulomb's law.
d13: distance from charge 1 to charge 3.
d23: distance from charge 2 to charge 3
Fr: Resulting force.
q1=+2.06 x 10-9 C
q2= -3.27 x 10-9 C
q3= +1.05 x 10-9 C
K=9-10^9 N-m^2/C^2
d13= 0,20 m
d23= 0,10 m
F13= K * (q1 * q3)/(d13)^2
F13=9,7335*10^(-8) N
F23=K * (q2 * q3)/(d23)^2
F23= -3,09 * 10^(-7)
Step 3: We calculate the resultant force on charge 3.
Fr=F13+F23= -2,11665 * 10^(-7)
The correct answer should be C. standard
When you have standardization developed, then it is possible to compare scores across different scales and make sure that everything works relatively fine.