Answer:
a. Molarity=
b. Molality=
Explanation:
Hello,
In this case, given the information about the aniline, whose molar mass is 93g/mol, one could assume the volume of the solution is just 200 mL (0.200 L) as no volume change is observed when mixing, therefore, the molarity results:
Moreover, the molality:
Best regards.
The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Calcium fluoride: CaF₂
Ca(2+) >>> Ar (argon)
F(-) >>> Ne (neon)
First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>
Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g