A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
There is no "why", because that's not what happens. The truth is
exactly the opposite.
Whatever the weight of a solid object is in air, that weight will appear
to be LESS when the object is immersed in water.
The object is lifted by a force equal to the weight of the fluid it displaces.
It displaces the same amount of air or water, and any amount of water
weighs more than the same amount of air. So the force that lifts the
object in water is greater than the force that lifts it in air, and the object
appears to weigh less in the water.
The three main layers are the core, the mantle, and the crust. The core is divided into two parts, the liquid outer core, and the solid inner core. Together it is 3450 km thick. The mantle is 2100 km thick, and the crust is 35-70 km thick. Hope I helped!
Answer: B, Companies passed on production and transportation costs to consumers
Explanation: