Answer:
exosphere and ionosphere.
Explanation:
very high up,the earth's atmosphere becomes very thin. the region where atoms and moleculesescape into space is referred to as the exosphere. exosphere is on top of the thermosphere.
scientists what is called the ionospherean extension of the thermosphere. so technically, ionosphere is not another atmospheric layer.
The answer for the following question is explained.
<u><em>Therefore the number of electrons present with the values n = 5, l = 2, m = -2, s = +1/2 is</em></u><u> </u><u><em>one(1).</em></u>
Explanation:
Here;
n represents the principal quantum number
l represents the Azimuthal quantum number
m represents magnetic quantum number
s represents spin quantum number
n = 5,
l = 2,
m = -2,
s = +1/2
Here, it implies 5d orbital.
In the 5d orbital, 10 electrons.
As the magnetic quantum number is -2, and so it can have 1 electron.
<u><em>Therefore the number of electrons present with the values n = 5, l = 2, m = -2, s = +1/2 is</em></u><u> </u><u><em>one(1)</em></u>
Gee. I'll have to guess at what's "commonly thought".
One thing is the scale. Nobody has an accurate picture of the scale in
his head, because we never see a true-scale drawing. THAT's because
it's almost impossible to draw one on paper.
Example:
Shrink the solar system and everything in it so that the Sun
is the size of a quarter (the 25¢ coin).
Then:
-- The Earth is in orbit around the sun, 8.6 feet from it.
That's close enough that you might think you could find the
shrunken Earth. Unfortunately, it's only 0.009 inch in diameter.
-- The shrunken Jupiter is a 'huge' gas giant almost 0.1 inch in diameter.
It's orbiting the sun, about 45 feet away from it.
-- The shrunken Uranus is another gas giant, about 0.035 inch in diameter.
It's orbiting the sun, about 165 feet away from it.
-- The nearest star outside of the solar system is 441 MILES away !
On the same shrunken scale !
And there's NOTHING between here and there !
I think that's the biggest point to make about the REAL solar system ...
its utter emptiness. With the sun reduced to something you can hold
in your hand, the planets are the size of grains of sand, with hundreds
of feet of nothingness between them.
Same for its mass: The solar system is approximately nothing but a star.
That's it. A star, with some dust and some gas around it, and here and there
in the neighborhood a microscopic pebble or a chip of mineral. But mostly
it's nothing but a star ... if you went around and gathered up all that other
rubbish in the same bag and called it a part of the same solar system, the
sun would still have more than 99% of the total mass, and the bag would
hold less than 1% of it.
Book ... It's getting late, Hillary's fading, and that's all I can think of.
I hope this much is some help.
The answer is 5.32 × 10²³ molecules
<span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance:
</span>6.023 <span>× 10²³ units per 1 mole
We have 0.883 moles.
If 1 mole has </span>6.023 × 10²³ molecules, 0.883 moles will have x molecules:
1 mole : 6.023 × 10²³ molecules = 0.883 moles : x
x = 6.023 × 10²³ molecules * 0.883 moles : 1 mole = 5.32 × 10²³ molecules