Answer:
- 7.088 m/s²
Explanation:
As we know that,
★ Acceleration = Change in velocity/Time
→ a = (v - u)/t
Here,
- Initial velocity (u) = 27.7 m/s
- Final velocity (v) = 10.9 m/s
→ a = (10.9 m/s - 27.7 m/s)/2.37 s
→ a = -16.8/2.37 m/s²
→ <u>a</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u><u>.</u><u>0</u><u>8</u><u>8</u><u> </u><u>m/s²</u> [Answer]
Negative sign denotes that the velocity is decreasing.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
The answer should be B) Scientific theories and laws develop from the acquisition of scientific knowledge. Hope this helps you.
Answer:
P = 2439.5 W = 2.439 KW
Explanation:
First, we will find the mass of the water:
Mass = (Density)(Volume)
Mass = m = (1 kg/L)(10 L)
m = 10 kg
Now, we will find the energy required to heat the water between given temperature limits:
E = mCΔT
where,
E = energy = ?
C = specific heat capacity of water = 4182 J/kg.°C
ΔT = change in temperature = 95°C - 25°C = 70°C
Therefore,
E = (10 kg)(4182 J/kg.°C)(70°C)
E = 2.927 x 10⁶ J
Now, the power required will be:
where,
t = time = (20 min)(60 s/1 min) = 1200 s
Therefore,
<u>P = 2439.5 W = 2.439 KW</u>
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:
part a)
Electric Field strength at point P: a = 0.75 m
part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:
E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)