Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
Answer:
Doppler Theory
Explanation:
it's a theory regarding the change in wave frequency during the relative motion between a wave source and its observer.
<h3>Question -:</h3>
The Earth orbits around the sun because the gravitational force that the sun
exerts on the Earth:
O A. causes Earth's acceleration toward the sun.
O B. is very small because the sun is so far from the Earth.
O c. is smaller than the force the Earth exerts on the sun.
O D. pushes the Earth away from the sun.
<h3>Answer -:</h3>
O A. causes Earth's acceleration toward the sun.
<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>
Answer:
4.6 kHz
Explanation:
The formula for the Doppler effect allows us to find the frequency of the reflected wave:
where
f is the original frequency of the sound
v is the speed of sound
vs is the speed of the wave source
In this problem, we have
f = 41.2 kHz
v = 330 m/s
vs = 33.0 m/s
Therefore, if we substitute in the equation we find the frequency of the reflected wave:
And the frequency of the beats is equal to the difference between the frequency of the reflected wave and the original frequency: