Answer:
Explanation:
From the position coordinates given , it appears that the ball moves simultaneously along x and y direction.
Displacement along x direction in one second = 4.4 - 1.8 = 2.6 m
So velocity along x direction V_x =
Similarly velocity along y direction V_y(1) =
In the next phase velocity changes both in x and y direction.
velocity in x - direction V_x(2) = [tex]\frac{2}{s}[/tex
Velocity in Y- direction V_y(2) = [tex]\frac{3.1}{s}[/tex
Acceleration in x direction = change of velocity in x direction
= ( 2 - 2.6 ) = -.6 m s⁻²
Acceleration in y direction = ( 3.1 - 2.6 ) = 0.5 m s⁻²
Total acceleration =\sqrt{( -.6 )² + ( .5 )²}
= .78 ms⁻²
<span>I believe the answer is 0.29.</span>
Answer:
The longest wavelength in vacuum for which there is constructive interference for the reflected light, λ = 3472.
Explanation:
Refractive index of Glass (given) = 1.5
For the case of a constructive interference,
2nt = (m + 1/2) λ
For case 1,
2nt = (m + 1/2) 496 nm
For case 2,
2nt = (m +1+ 1/2) 386 nm
2nt = (m+3/2) * 386 nm
(m + 1/2) 496 nm = (m+3/2) * 386 nm
m = 3
Inserting the value of m in 1.
2nt = (m + 1/2) 496 nm
2*1.5t = (3 + 1/2) * 496 nm
t = ((3 + 1/2) * 496 nm)/ 3
t = 578.6 nm
The thickness of the glass, t = 578.6 nm
b)
It is generally known that for constructive interference,
2nt = (m + 1/2) λ
λ = 2nt / ((m + 1/2))
For Longest Wavelength, m = 0
λ = 2*1.5*578.6/ (1/2)
λ = 3472 nm
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.