a) An inflated balloon was pressed against a wall after it has been rubbed with a piece of synthetic cloth. It was found that the balloon sticks to the wall. <u>This is because a positive and negative electric charge is produced, therefore the balloon sticks to the wall.</u>
b) When an object is thrown up, it comes back to ground <u>because of gravitational attraction force of earth</u>.
c) Mountaineers suffer nose bleeding at higher altitudes <u>because the oxygen level decreases with increase in altitude, which the body cannot adjust.</u>
d) Foundations of high rise buildings are kept wide <u>because more is the area of contact, less is the pressure efforts. So, foundations are wide so as to decrease the possibility of the building from falling down.</u>
e) Deep sea divers or high altitude fliers wear special suits <u>so as prevent their body from being crushed by the water pressure. Since water pressure is maximum at deep seas and oceans, therefore, more is the risk of being injured.</u>
f) Walls of a dam are thickened near the base <u>so that the dam can handle the kinetic energy pressure and prevent itself from breaking down, which if not, can lead to flooding</u>.
HOPE IT HELPS...
Answer:
Part of the question is missing but here is the equation for the function;
Consider the equation v = (1/3)zxt2. The dimensions of the variables v, x, and t are [L/T], [L], and [T] respectively.
Answer = The dimension for z = 1/T3 i.e 1/ T - raised to power 3
Explanation:
What is applied is the principle of dimensional homogenuity
From the equation V = (1/3)zxt2.
- V has a dimension of [L/T]
- t has a dimension of [T]
- from the equation, make z the subject of the relation
- z = v/xt2 where 1/3 is treated as a constant
- Substituting into the equation for z
- z = L/T / L x T2
- the dimension for z = 1/T3 i.e 1/ T - raised to power 3
When it comes to wave behavior, there are parameters called wavelength and frequency. These two are related by speed of the radiowave. Radiowaves are electromagnetic waves which travels as fast as light. The wavelength is the distance while frequency is the reciprocal of time. When you multiply them both, you get the electromagnetic wave's speed. The equation is c = wavelength*frequency, where c is the speed of light equal to 3 x 10^8 m/s.
3 x10^8 m/s = wavelength/104.9 x 10^6 Hz (Hertz is 1/s)
wavelength = 2.86 meters
The spacing of the molecules enables sound to travel much faster through a solid than a gas.
Vibrational energy, which as we know, causes heat!