Answer:
Explanation:
Given data:
diameter of solenoid is 11.1 cm
B = 42.9 mT
dR = 6.65 mT/s
d(1) = 4.34 cm
d(2) = 7.46 cm
we know that
electric field due to solenoid is given as
E = 1/2 dB/dt (r)
E = 1/2 dB/dt (R^2)/r
Answer:
The temperature of the Aluminium plate 44.84⁰C
Explanation:
Number of transistors = 4
Since the heat dissipated by each transistor is 12W
Total heat dissipated, Q = 4 * 12 = 48 W
Q = 48 W
Cross sectional Area of the Aluminium plate, A = 2(l * b)
l = Length of the aluminium plate = 22 cm = 0.22 m
b = width of the aluminium plate = 22 cm = 0.22 m
A =2( 0.22 * 0.22 )
A = 0.0968 m²
From the heat balance equation, Q = hAΔT
h = 25 W/m²·K
A = 0.0968 m²
ΔT = T - T(air)
T(air) = 25°C
ΔT = T - 25°C
Q = 25 * 0.0968 * ( T - 25)
Q = 2.42 (T - 25)
Substitute Q = 48 into the equation above
48 = 2.42 (T - 25)
T - 25 = 19.84
T = 25 + 19.84
T = 44.84 ⁰C
<h3><u>Answer;</u></h3>
Velocity and wavelength are directly proportional when frequency is kept constant.
<h3><u>Explanation;</u></h3>
- <em><u>Frequency of a wave is the number of complete oscillations made by a given wave in one second. </u></em>
- <em><u>Wavelength on the other hand, is the distance between two successful crests or troughs in a transverse wave or two successful rarefactions or compressions in a longitudinal waves.</u></em>
- <em><u>The speed of a wave is given by the product of the frequency of a wave and the wavelength.</u></em>
- <em><u>Speed = Frequency × wavelength, </u></em>
- <em><u>Therefore, if frequency is kept constant, then the speed of a wave is directly proportional to the wavelength, such that an increase in wavelength increases the speed of the wave and vice versa.</u></em>
Answer:
The resultant vector is 1 m/s
Explanation:
The resultant vector is 1 m/s west based on triangle law of vector addition, when two sides of a triangle is represented by two vectors, the resultant vector is the third side of the triangle.