Answer:
See the answer below
Explanation:
<em>Recall that the law of dilution states that the number of moles before dilution must be equal to the number of moles after dilution.</em>
Mathematically,
molarity x number of moles before dilution = molarity x number of moles after dilution.
For solution A: final molarity = 3 mM, final volume = 2mL, initial molarity of KMnO4 = 10 mM
Applying the equation:
10 x initial volume = 3 x 2
initial volume = 6/10 = 0.6
<u>Hence, Tube A should be made with 0.6 mL of 10 mM KMnO4 stock and 1.4 mL of distilled water to give a solution of 2 mL 3 mM KMnO4.</u>
For solution B:final molarity = 8 mM, final volume = 2 mL, initial molarity = 10 mM
10 x initial volume = 8 x 2
initial volume = 16/10 = 1.6
<u>Hence, Tube B should be made with 1.6 mL of 10 mM KMnO4 stock and 0.4 mL of distilled water to give a solution of 2 mL 8mM KMnO4. </u>
It affect the water flow and how much of the water turns into gas
Photosynthesis is The prosses of turning light energy into Chemical energy
accrues in plants and some algae
Answer:
<em>Direct purposes include bathing, drinking, and cooking, while examples of indirect purposes are the use of water in processing wood to make paper and in producing steel for automobiles.</em>
Explanation:
<h3>I hope this helps!!</h3>
Answer:
Increasing the alveolar ventilation rate will increase the partial pressure of oxygen in the alveoli.
Explanation:
Alveolar Ventilation rate is the rate of air flow in the alveoli of the lung during normal breathing. It is measured in milliliters of air per minute (mL/min). The alveolar ventilation rate is an important factor in determining the concentrations (partial pressures) of oxygen and carbon dioxide in the functioning alveoli.
A high rate of alveolar ventilation, would result in a rapid influx of oxygen-rich air and efflux carbon dioxide-filled air from the alveoli. This ultimately results in an increase in the concentration of oxygen and a decrease in the concentration of carbon dioxide within the alveoli.
Effects of alveolar ventilation on partial pressures of alveolar carbon dioxide and oxygen (PACO₂ and PAO₂)
If the alveolar ventilation rate is increased (and carbon dioxide production is unchanged), then the partial pressure of carbon dioxide in the alveoli, PACO₂ will decrease.
If the alveolar ventilation rate increases, then the partial pressure of oxygen in the alveoli, PAO₂ will increase.