Answer: I = 778. 33
Step-by-step explanation:
P= 14413.49
R= 0.0015
T= 36
The formula for calculating interest is given as :
I = PRT
substituting the given values , we have :
I = 14413.49 x 0.0015 x 36
I = 778.32846
I = 778. 33
I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
490
Step-by-step explanation:
4333333
67
8
add 2q to both sides.
subtract 5 to both sides.
divide 5 to both sides.
the answer is:
Answer:
You aren't even giving 200 points.
Step-by-step explanation: