Answer:
1.62 L
Explanation:
Charle's law for ideal gases states that for a gas kept at constant pressure, the ratio between volume and temperature is constant:
where in this problem we have
is the initial volume of the gas
is the initial temperature of the gas
is the final volume of the gas
is the final temperature
Solving the equation for V2, we find
The horizontal force applied is 160 N while the velocity is 2.03 m/s.
<h3>What is the speed of the car?</h3>
The work done by the car is obtained as the product of the force and the distance;
W = F x
F = ?
x = 30.0 m
W = 4,800 J
F = 4,800 J/30.0 m
F = 160 N
But F = ma
a = F/m
a = 160 N/2.30 ✕ 10^3-kg
a= 0.069 m/s
Now;
v^2 = u^2 + 2as
u = 0/ms because the car started from rest
v = √2as
v = √2 * 0.069 * 30
v = 2.03 m/s
Learn more about force and work:brainly.com/question/758238
#SPJ1
Answer:
the less shielding of electrons
Answer: distance d = 4.73e10m
Explanation: Suppose the charge on the black hole is 5740 C which is a positive charge.
Using electric potential V formula:
V = kq / d
Where K = 9.05×10^9Nm^2/C
And e = 1.6×10^-19C
But you don't need to substitute it.
1090 V = 8.99e9N·m²/C² * 5740C /d
Make d the subject of formula
d = 4.73e10 m
Answer:
No work is performed or required in moving the positive charge from point A to point B.
Explanation:
Lets take
Q= Positive charge which move from point A to point B along
Voltage difference,ΔV =V₁ - V₂
The work done
W = Q . ΔV
Given that charge is moved from point A to point B along an equipotential surface.It means that voltage difference is zero.
ΔV = 0
So
W = Q . ΔV
W = Q x 0
W= 0 J
So work is zero.