Answer:
sulfur dichloride
Explanation:
SCl2 is the chemical formula for sulfur dichloride. This compound is made of only two elements, so it is a binary compound.
The question is incomplete, the complete question is:
The element tin has the following number of electrons per shell: 2.8. 18, 18, 4. Notice that the number of electrons in the outer shell of a tin atom is the same as that for a carbon atom. Therefore, what must be true of tin? Tin is a polar atom and can bind to other polar atoms. Tin has a high molecular weight to give tin-containing molecules greater stabilty. All of the above Tin conform single covalent bonds with other elements, but not double or triple covalent bonds Tincan bind to up to four elements at a time
Answer:
Tin can bind to up to four elements at a time
Explanation:
Certain important points were made in the question about tin and one of them is that tin is an element in the same group as carbon hence it has the same number of valence electrons as carbon.
Carbon is always tetra valent. The tetra valency of carbon is the idea that carbon forms four bonds.
If tin has the same number of valence electrons as carbon, then, tin can bind to up to four elements at a time
Answer:
Au
Explanation:
For the density of a face-centered cubic:
where
= molar mass of the compound
avogadro's constant
the volume of a unit cell
Given that:
Density = 19.30 g/cm³
a = 0.408 nm
a =
a =
∴
Thus, the molar mass of 197.37 g/mol element is Gold (Au).
Hey there!:
Molar mass of Mg(OH)2 = 58.33 g/mol
number of moles Mg(OH)2 :
moles of Mg(OH)2 = 30.6 / 58.33 => 0.5246 moles
Molar mass of H3PO4 = 97.99 g/mol
number of moles H3PO4:
moles of Mg(OH)2 = 63.6 / 97.99 => 0.649 moles
Balanced chemical equation is:
3 Mg(OH)2 + 2 H3PO4 ---> Mg3(PO4)2 + 6 H2O
3 mol of Mg(OH)2 reacts with 2 mol of H3PO4 ,for 0.5246 moles of Mg(OH)2, 0.3498 moles of H3PO4 is required , but we have 0.649 moles of H3PO4, so, Mg(OH)2 is limiting reagent !
Now , we will use Mg(OH)2 in further calculation .
Molar mass of Mg3(PO4)2 = 262.87 g/mol
According to balanced equation :
mol of Mg3(PO4)2 formed = (1/3)* moles of Mg(OH)2
= (1/3)*0.5246
= 0.1749 moles of Mg3(PO4)2
use :
mass of Mg3(PO4)2 = number of mol * molar mass
= 0.1749 * 262.87
= 46 g of Mg3(PO4)2
Therefore:
% yield = actual mass * 100 / theoretical mass
% = 34.7 * 100 / 46
% = 3470 / 46
= 75.5%
Hope that helps!