Answer:
perpendicular
Step-by-step explanation:
To determine if AB and CD are parallel, perpendicular, or neither, we need to get the slope of AB and CD first
Given A (−1, 3), B (0, 5),
Slope Mab = 5-3/0-(-1)
Mab = 2/1
Mab = 2
Slope of AB is 2
Given C (2, 1), D (6, −1)
Slope Mcd = -1-1/6-2
Mcd = -2/4
Mcd = -1/2
Slope of CD is -1/2
Take their product
Mab * Mcd = 2 * -1/2
Mab * Mcd = -1
Since the product of their slope is -1, hence AB and CD are perpendicular
Answer:
DC = 3
Step-by-step explanation:
Based on triangle similarity theorem, we would have the following equation:
Plug in the values
Cross multiply
3(9 + DC) = 9×4
27 + 3DC = 36
Subtract 27 from each side
3DC = 36 - 27
3DC = 9
Divide both sides by 3
DC = 9/3
DC = 3
The cost function is
c = 0.000015x² - 0.03x + 35
where x = number of tires.
To find the value of x that minimizes cost, the derivative of c with respect to x should be zero. Therefore
0.000015*2x - 0.03 = 0
0.00003x = 0.03
x = 1000
Note:
The second derivative of c with respect to x is positive (= 0.00003), so the value for x will yield the minimum value.
The minimum cost is
Cmin = 0.000015*1000² - 0.03*1000 + 35
= 20
Answer:
Number of tires = 1000
Minimum cost = 20
Answer: B
Explanation: it says if it moved 3 points to the left 7-3=4
First, it is important to understand that parallel lines have the same slope. Therefore, based on the formula y=mx+b in which m represents slope and based on the equation y=-1/2x+5, the slope of the unknown line is also -1/2. Then, there are two different ways to solve this problem using different formulas.
The first method to find the unknown equation is easy but not widely known. We can use the point slope formula which is (y-y1)=m(x-x1) in which we can plug a point and slope to find the equation. When we plug in the values given, we get y+6=-1/2(x-4) or y+6 =-1/2x+2 which simplifies to y=-1/2x-4.
The other method is using the slope intercept form or y=mx+b. When we plug in our slope and our point, we get -6=-1/2*4+b or -6=-2+b so b must equal -4, therefore we have all the information we need to plug values into y=mx+b. When we plug in our slope and y-intercept, we get y=-1/2x-4 which is the answer.
I hope this helps!