Answer:
Only d) is false.
Step-by-step explanation:
Let be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that . 0 is a root of p, so we have that .
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.
Answer:
A
Step-by-step explanation:
There isn’t enough info provided
Answer:
8
Step-by-step explanation:
The intersecting chord theorem is expressed as;
7 * x = 4 * 14
7x = 56
Divide both sides by 7
7x/7 = 56/7
x = 8
Hence the value of x is 8
Answer:
-1
Step-by-step explanation:
Over 12 on the x axis it goes down 12 on the y axis so the rate of change is -1