Answer : The molar mass of the solute will be
87.90 g/mol.Explanation : We know the formula for elevation in boiling point, which is
Δt = i
m
given that, Δt = 0.357,
= 5.02 and mass of
= 40,
on substituting the value we get,
0.357 = (1) X (5.02) X (x/ 0.044), on solving we get x = 2.844 X
.
Now, 0.250/ 2.844 X
=
87.90 g/mol. which is the weight of unknown component.
Answer:
two negative charges is the answer of your question
Answer:
Be (899 kj/mol) , Se (940.9 kj/mol), Ne(2081 kj/mol), He (2370 kj/mol),
Explanation:
For noble gases as they have complete octet so they require high amount of energy to remove the electron.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Nearly all life on Earth gets its energy from the sun, and the sun gets its energy through the process of nuclear fusion, which is why these type of energy is important to life on Earth.
Answer: Option (B) is the correct answer.
Explanation:
A covalent compound is a compound formed by sharing of electrons. And, in a covalent network solid atoms are bonded by covalent bonds in a continuous network that is extending throughout the material or solid.
This continuous arrangement of atoms are like a lattice.
For example, diamond is a covalent network solid in which carbon atoms are arranged in a continuous lattice like structure.
Hence, we can conclude that the statement all the atoms are covalently bonded to other atoms to form a lattice-like structure, best describes the structure of covalent network solids.