Answer:
1.23 j/g. °C
Explanation:
Given data:
Mass of metal = 35.0 g
Initial temperature = 21 °C
Final temperature = 52°C
Amount of heat absorbed = 320 cal (320 ×4.184 = 1338.88 j)
Specific heat capacity of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 52°C - 21 °C
ΔT = 31°C
1338.88 j= 35 g ×c× 31°C
1338.88 j= 1085 g.°C ×c
1338.88 j/1085 g.°C = c
1.23 j/g. °C = c
The balanced chemical equation between iron and oxygen to produce iron (III) oxide is,
Mass of Fe = 227.8 g
Moles of Fe =
Mass of oxygen = 128 g
Moles of
Calculating the limiting reactant: The reactant that produces the least amount of product will be the limiting reactant.
Mass of iron (III) oxide produced from Iron =
Mass of iron (III) oxide produced from oxygen=
Iron (Fe) produces the least amount of the product iron (III) oxide. So, Fe is the limiting reactant.
The least amount of energy required to activate atoms or molecules to a state in which they can undergo a chemical reaction.
Answer:
17 protons
19 neutrons
Explanation:
Chlorine will always have the same amount of protons, and that would be 17 protons.
The atomic mass will change according to how many neutrons are present.
Cl - 35 is comprised of 17 protons and 18 neutrons.
We want to find Cl - 36:
We simply add 1 neutron. 18 + 1 = 19 neutrons.
A) covert 0.330g to moles by dividing by molar mass of P2O5 .. Let's call this Y moles
B) 1 mole of anything contains the Avogradro Number of molecules
So here it is 6.02 x 10^23 x Y molecules
C) work out how many atoms in each molecule 2P + 5O total 7
So multiply answer to B by 7 to get final answer