The gravitation acceleration on the moon is different than on Earth. It is 1.6 m/s^2. If you weigh 120 lbs, then you would multiply 120 pounds by the gravitational acceleration on the moon and then divide by the acceleration on Earth.
(120 lbs * 1.6) / 9.8 = 20 pounds.
The mass will always be the same no matter what planet you’re on, so it’s still 54 kg.
Responder:
<h2>
0.7Hertz
</h2>
Explicación:
Usando la fórmula para calcular la velocidad de onda que se expresa como se muestra.
Velocidad de una onda = frecuencia * longitud de onda
v = fλ
Dada la velocidad de onda = 14 m / sy longitud de onda = 20 metros
frecuencia f = v / λ
f = 14/20
f = 0.7Hertz
La frecuencia de la onda es de 0.7 Hertz.
<h3>
Answer:</h3><h3>we can say that:-</h3>
- A reading with more no of significant figures is considered to be more precise.
- Kyra recorded a reading of 24.3 sec. Since all non 0 digits are considered to be significant this reading has 3 significant figures.
- Pari recorded a reading of 24 sec. Since all non 0 digits are considered to be significant this reading has 3 significant figures.
<h3>hence we can say that kyra's reading has more significant figures nd so it is more precise.</h3>
Answer:
The marble will start to decrease in speed
Explanation:
The longer the table is the more the marbles speed would decrease because marbles can only be fast for a certain amount of time
Answer:
A. Two tennis balls that are near each other
Explanation:
The formula for gravitational force (F) between two objects is
where m₁ and m₂ are the masses of the two objects, d is the distance between their centres, and G is the gravitational constant.
Thus, two objects that are far from each other will have a smaller gravitational force. We can eliminate Options C and D.
If the objects are at the same distance, those with the smaller mass will have a smaller force.
The mass of a tennis ball is 57 g.
The mass of a soccer ball is 430 g.
Two tennis balls that are near each other will have a smaller gravitational attraction.