Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
Answer:
The answer remains the same. The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. So the chemical energy is just being converted into heat and light.
Explanation:
hope this helps...
I think the answer for this is 4702.5 J/g*k Depending on if it is water as a solid liquid or gas. I used water as a liquid when I solved it. J=(75g)(4.18 J/g*k)(15K)
Hydrazine is a mixed chemical...look up what is in Hydrazine. Then find the chemicals in it. 13.00g of hydrazine can react to anything....water, gas, etc. but it might not be visible.
Answer:
Ka =
Explanation:
Initial concentration of weak acid =
pH = 6.87
HA dissociated as:
(0.00045 - x) x x
[HA] at equilibrium = (0.00045 - x) M
x =
0.000000135 <<< 0.00045