well they are normally bigger than the inner planets, and they also have a bigger distance to go
Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water =
Using equation to solve the problem
E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water
now ,
taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
I’m not sure I think it’s A
<h2>Answer: decreasing</h2>
An RC circuit is an electrical circuit composed of resistors and capacitors, where the charging time of the circuit is proportional to the magnitude of the electrical resistance and the capacity of the capacitor.
As shown below:
In this context, the electrical resistance is the opposition to the flow of electrons when moving through a conductor.
Therefore:
<h2>When a capacitor is being charged in an RC circuit, the current flowing through a resistor <u>decreases</u>.</h2>
And the correct option is b.