<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Did you try looking it up ?
Answer: The Electrostatic force of attraction or repulsion between two charges shows that the Newton's third law applies to electrostatic forces.
Explanation: Consider two Oppositely charged charges separated by distance d.
The electrostatic force exerted by charge 1 on charge 2 is.
By Coulomb's Law :
F1 = k .....................................(1)
The electrostatic force exerted by charge 2 on charge 1 is.
F2 = - k ................................. (2)
negative sign shows that force are in opposite direction.
From Equation 1 and 2
F1 = - F2
Which implies Newton Third law.
Answer:
33.6 m
Explanation:
Given:
v₀ = 0 m/s
a = 47.41 m/s²
t = 1.19 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (1.19 s) + ½ (47.41 m/s²) (1.19 s)²
Δx = 33.6 m