Answer:
114mL.
Explanation: hope this helped
The answer is number 1 - energy is emitted
Energy is released when an atom in an excited state returns to the ground state.
BaSO₄ is relatively harmless, but BaS is highly toxic.
BaSO₄ is quite insoluble (240 µg/100 mL). It is a <em>mild irritant</em> in cases of skin contact and inhalation. However, it is <em>safe enough</em> that health professionals ask patients to drink a suspension of BaSO₄. The Ba is opaque to X-rays, so it makes the stomach and intestines more visible to radiographers.
BaS is soluble (7.7 g/100 mL). It reacts slowly with water and more rapidly in the acid conditions of the stomach to <em>release H₂S</em>.
BaS + 2HCl ⟶ BaCl₂ + H₂S
An H₂S concentration of 60 mg/100 mL can be <em>fatal within 30 min</em>.
<em>Don’t eat barium sulfide!</em>
Answer: I don’t understand what your asking elaborate more
Explanation:
Answer:
molar mass M(s) = 65.326 g/mol
Explanation:
- M(s) + H2SO4(aq) → MSO4(aq) + H2(g)
∴ VH2(g) = 231 mL = 0.231 L
∴ P atm = 1.0079 bar
∴ PvH2O(25°C) = 0.03167 bar
Graham´s law:
⇒ PH2(g) = P atm - PvH2O(25°C)
⇒ PH2(g) = 1.0079 bar - 0.03167 bar = 0.97623 bar = 0.9635 atm
∴ nH2(g) = PV/RT
⇒ nH2(g) = ((0.9635 atm)(0.231 L))/((0.082 atmL/Kmol)(298 K))
⇒ nH2(g) = 9.1082 E-3 mol
⇒ n M(s) = ( 9.1082 E-3 mol H2(g) )(mol M(s)/mol H2(g))
⇒ n M(s) = 9.1082 E-3 mol
∴ molar mass M(s) [=] g/mol
⇒ molar mass M(s) = (0.595 g) / (9.1082 E-3 mol)
⇒ molar mass M(s) = 65.326 g/mol