Answer:
C6H14O3F
Explanation:
The first step is to divide each compound by its molecular weight
Carbon
= 39.10/12
= 3.258
Hydrogen
= 7.67/1
= 7.67
Oxygen
= 26.11/16
= 1.63
Phosphorous
= 16.82/31
= 0.542
Flourine
= 10.30/19
= 0.542
The next step is to divide by the lowes value
3.258/0.542
= 6 mol of C
7.67/0.542
= 14 mol of H
1.63/0.542
= 3 mol of O
0.542/0.542
= 1 mol of P
0.542/0.542
= 1 mol of F
Hence the molecular formula is C6H14O3F
Answer:
a)calculated molarity of NaOH would be lower
b) calculated molarity of NaOH would be lower
c) calculated molarity of NaOH would be lower
d) calculated molarity of NaOH would be unaffected
Explanation:
Let us recall that the reaction of NaOH and HCl is as follows;
NaOH(aq) + HCl(aq) ----> NaCl(aq) + H2O(l)
Since the reaction is 1:1, when the number of moles of HCl reacting with NaOH is low due to dilution, the calculated molarity of NaOH also becomes less than it's accurate value.
When 40mL of water is added to the titration flask rather than 25ml of water, the acid is more dilute hence less number of moles of acid than necessary reacts with the base thereby yielding a less than accurate value of the molarity of NaOH.
If the burette wet with water is not rinsed with NaOH solution, the concentration of the NaOH in the burette decreases due to dilution with water and a less than accuracy value is calculated for the molarity of NaOH.
If five drops of phenolphthalein is used instead of one or two drops, there is no qualms since enough phenolphthalein may be added to ensure that a sharp end point is obtained.
boiling point - condensation point
is the answer i would choose because it makes more scene
Electrons are responsible for the transfer of charge.
Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3