Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃)
let's calculate
α = (24 0.22 - 13 0.10) 2/12 0.22²
α = 13.7 rad / s²
The whole definition of frequency is: <em>How often something happens. </em>
Especially referring to something that happens over and over and over and over.
One example is Choice-C: How often the particles of a medium vibrate.
"Frequency" comes from the word "frequent". That means "often", and "frequency" just means "often-ness" ... HOW often the thing happens.
Some other examples:
Frequency of jump-roping . . . maybe 60 per minute .
Frequency of rain . . . maybe 5 per month .
Frequency of an AM radio station . . . maybe 1 million waves per second.
(If it's something <u><em>per second</em></u>, then we call it "Hertz". That's not for the car rental company. It's for Heinrich Hertz, the German Physicist who was the first one to prove that electromagnetic waves exist. He sent radio waves all the way ACROSS HIS LABORATORY and detected them at the other side ( ! ), in 1887.)
Frequency of the wiggles in the sound wave coming out of a trumpet playing the note ' A ' . . . 440 Hertz.
Frequency of sunrise and the Chicago Tribune newspaper . . . 1 per day
Frequency of the cycle of Moon phases and an average human woman's ovulation cycle: 1 per 29.531 days, 1 per ~28 days .
Answer:
Tension T1 is less than tension T2.
T1 < T2
Explanation:
According to given data,
mass of box A ( mA) is grater than mass of box B (mB)
we can write,
m(A) > m(B)
Newton's second law states that:
Tension of object is directly proportional to the mass of the system.
T ∝ m
here Boxes A and B are being pulled to the right on a frictionless surface,
so Tension T1 generates due to the mass of box A m(A)
and Tension T2 arises due to mass of the system m(A) + m(B)
Thus tension T1 will be less than tension T2
T1 < T2
learn more about Tension force here:
<u>brainly.com/question/13175014</u>
<u />
#SPJ4
Answer:
Industries outlook is uncertain
Explanation:
Competitive pressures stemming from the threat of entry are stronger when the industry's outlook is uncertain or highly risky, entry barriers are low, and very few existing industry members are looking to expand their market reach by entering product segments or geographic areas where they currently do not have a presence. entry barriers are low, the pool of entry candidates is large, and existing industry members are earning good profits. there are fewer than 10 entry candidates with the potential to hurdle the industry's barriers to entry. t is difficult or costly for a customer to switch to a new brand, the total dollar investment needed to enter the market successfully exceeds $5 million, and existing governmental regulations impose significant cost and compliance burdens on industry members. buyers have strong brand preferences and high degrees of loyalty to their preferred brand and when it takes new entrants less than 5 years to secure attractive amounts of space on retailers' shelves and build a well-recognized brand name.
Explanation:
Load=800N
Effort=200N
1. Mechanical Advantage = LOAD/EFFORT
= 800N/200N
= 4
2 Velocity Ratio = no. Of pulleys =5
3. Efficiency = Mechanical advantage / velocity ratio × 100%
= (4/5)×100%
=80%
4. output work= load×load distance
= 800N × 5m
= 4 × 1000J
5. Efficiency = (output work/input work) ×100%
Or, 80% = (4000J/input work) ×100%
Or, 80%/100% = 4000J/inputwork
Or, 4/5 = 4000J/inputwork
Or, input work =4000J × 5/4
Input work = 5×1000J
I hope it helped! ;-)