The molarity of the diluted solution is 0.33 M
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 0. 5 M
Volume of stock solution (V₁) = 100 mL
Volume of diluted solution (V₂) = 100 + 50 = 150 mL
<h3>Molarity of diluted solution (M₂) =? </h3>
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
<h3>M₁V₁ = M₂V₂</h3>
0.5 × 100 = M₂ × 150
50 = M₂ × 150
Divide both side by 150
M₂ = 50 / 150
<h3>M₂ = 0.33 M</h3>
Therefore, the molarity of the diluted solution is 0.33 M
Learn more: brainly.com/question/24625656
Answer: -64.1 kJ.
Explanation:
According to first law of thermodynamics:
=Change in internal energy
q = heat absorbed or released
w = work done or by the system
w = work done by the system= {Work is done by the system is negative as the final volume is greater than initial volume}
w = -855 Joules = 0.855 kJ (1kJ=1000J)
q = -65.0 kJ {Heat released by the system is negative}
Thus the change internal energy (ΔE) for a system that is giving off 65.0 kJ of heat and is performing 855 J of work on the surroundings is -64.1 kJ.
Explanation:
During a chemical change, a new kind of matter is formed. Examples are combustion, rusting of iron, precipitation and souring of milk.
Here are some of the properties of chemical change:
- They are not easily reversible
- It leads to the production of new kinds of matter.
- It involves change in mass.
- It requires a considerable amount of energy.
Learn more:
Chemical change brainly.com/question/9388643
#learnwithBrainly
Answer:When a person hyperventilates they exhale more carbon dioxide than normal. As a result the carbon dioxide concentration in the blood is reduced and the bicarbonate/carbonic acid equilibrium shifts to the left. The corresponding drop in H3O+ concentration causes an increase in pH.
Explanation: