It is a combustion reaction. C3H8 will react with oxygen to form carbon dioxide and water.
Answer:
The answer to your question is 1.83 x 10²⁵ particles
Explanation:
Data
particles of H₂O = ?
mass of H₂O = 546 g
Process
1.- Calculate the molar mass of Water
Molar mass = (2 x 1) + (1 x 16)
= 2 + 16
= 18 g
2.- Use proportions to find the number of particles. Use Avogadro's number.
18 g ---------------- 6.023 x 10²³ particles
546 g --------------- x
x = (546 x 6.023 x 10²³) / 18
3.- Simplification
x = 3.289 x 10²⁶ / 18
4.- Result
x = 1.83 x 10²⁵ particles
1.38 moles of oxygen
Explanation:
Thermal decomposition of Lead (II) nitrate is shown by the balanced equation below;
2Pb(NO₃)₂ → 2PbO + 4NO₂ + O₂
The mole ration of Lead (II) nitrate to oxygen is 2: 1
Therefore 2.76 moles of Lead (II) nitrate will lead to production of? moles of oxygen;
2: 1
2.76: x
Cross-multiply;
2x = 2.76 * 1
x = 2.76 / 2
x = 1.38
Nothing, he shouldn’t be able to move it. Think about it like this say you try really hard to push something that is 5,000 pounds and you push as hard as you can. Well you can’t move it bc it weighs more than you can push. I’m sure their is a equation you can use to see how much you can push (body weight=force?)
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ