Easey peasy
oposite angle is equal
other angles are supplementary (supplementary means add to 180, and a straight line=180 so if you look at 2 lines intersecting and think for a little bit, you wiill see why)
oposite angle=30
other angle is adds to 180
30+other=180
subtract 30
other=150
other is oposite other other
other=other other
150=other other
angles are
150,30,150
The answer to = 2x27 is f(x)
The correct question is
<span>What are the vertex and x-intercepts of the graph of the function given below?
y = x</span>²<span>-2x-35
step 1
convert the equation in the vertex form
y+35=x</span>²-2x
y+35=(x²-2x+1-1)
y+35+1=(x²-2x+1)
y+36=(x-1)²------> equation in the vertex form
the vertex is the point (1,-36)
the answer Part a) is
the vertex is the point (1,-36)
Part b) Find the x-intercepts
we know that
the x-intercepts is when y=0
so
y+36=(x-1)²
for y=0
(x-1)²=36
(+/-)(x-1)=√36-------> (+/-)(x-1)=6
(+)(x-1)=6------> x=6+1-----> x=7
(-)(x-1)=6-----> x=1-6-----> x=-5
the x-intercepts are the points
(7,0) and (-5,0)
the answer part b) is
the x-intercepts are the points (7,0) and (-5,0)
the total answer is the option
<span>A. Vertex: (1, -36); x-intercepts: (7, 0) and (-5, 0)</span>
Part A
Answer: The common ratio is -2
-----------------------------------
Explanation:
To get the common ratio r, we divide any term by the previous one
One example:
r = common ratio
r = (second term)/(first term)
r = (-2)/(1)
r = -2
Another example:
r = common ratio
r = (third term)/(second term)
r = (4)/(-2)
r = -2
and we get the same common ratio every time
Side Note: each term is multiplied by -2 to get the next term
============================================================
Part B
Answer:
The rule for the sequence is
a(n) = (-2)^(n-1)
where n starts at n = 1
-----------------------------------
Explanation:
Recall that any geometric sequence has the nth term
a(n) = a*(r)^(n-1)
where the 'a' on the right side is the first term and r is the common ratio
The first term given to use is a = 1 and the common ratio found in part A above was r = -2
So,
a(n) = a*(r)^(n-1)
a(n) = 1*(-2)^(n-1)
a(n) = (-2)^(n-1)
============================================================
Part C
Answer: The next three terms are 16, -32, 64
-----------------------------------
Explanation:
We can simply multiply each previous term by -2 to get the next term. Do this three times to generate the next three terms
-8*(-2) = 16
16*(-2) = -32
-32*(-2) = 64
showing that the next three terms are 16, -32, and 64
An alternative is to use the formula found in part B
Plug in n = 5 to find the fifth term
a(n) = (-2)^(n-1)
a(5) = (-2)^(5-1)
a(5) = (-2)^(4)
a(5) = 16 .... which matches with what we got earlier
Then plug in n = 6
a(n) = (-2)^(n-1)
a(6) = (-2)^(6-1)
a(6) = (-2)^(5)
a(6) = -32 .... which matches with what we got earlier
Then plug in n = 7
a(n) = (-2)^(n-1)
a(7) = (-2)^(7-1)
a(7) = (-2)^(6)
a(7) = 64 .... which matches with what we got earlier
while the second method takes a bit more work, its handy for when you want to find terms beyond the given sequence (eg: the 28th term)
Cos α = sin (90-α) so cos 19 = sin 90-19 = sin 71