Answer:
Cilia, tail-like projections found on the surface of cells, are perhaps best known as molecular flippers that help cells move around. ... Cilia, tail-like projections found on the surface of cells, are perhaps best known as molecular flippers that help cells move around.
Answer:
Part A: Thr-Leu-Val
Part B: ACC-UUG-GUU
Explanation:
When you transcribe a DNA sequence to mRNA, you need to remember that in RNA there is no Thymine (T), instead it has Uracil (U). So the base pairings would be like this compared to DNA base pairing:
DNA RNA
A-T A-U
T-A T-A
C-G G-C
G-C C-G
Given the sequence the transcription will be as follows:
DNA : TGG - AAC - CAA
mRNA: ACC - UUG - GUU
Next, to translate it into amino acids, you will use the chart. Now amino acids pair in codons (3 base pairs at a time). Let's take the first codon in your sequence:
ACC
1st 2nd 3rd
A C C
Using the column on the left, find the row that matches it, so in this case A.
At the very top, there is another row of letters, looking at the row of A only, look for the column of the second base which is C.
Lastly, look at the right most column and find the letter that matches the third base within the box where A and C intersect. In this case, C is your third base.
The amino acid where all three intersect is your first amino acid which is Thr.
Just do this for the next codons and you will come up with the answer.
Your answer would be A. because its "parents" do not have any white flowers at all. The color of its flowers would be dark pink.
<span>DNA stands for deoxyribonucleic
acid. It has a double strand that contains the genes (a hereditary material) of
the organism. It was discovered by James Watson and Francis Crick. Their double-helix
structure was based on x-ray diffraction image named as Photograph 51 or Photo
51. It was taken by Raymond Gosling, a pHD student under the supervision of
Rosalind Franklin. They used this photo to determine the chemical and physical
structure of the DNA and the bond that links the genes altogether. The answer is Rosalind Franklin</span>
We see all of the moon's <em>shapes</em> every 29.53 days. But
there's about 45% of its <em>surface</em> that we never see.