Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by
F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.
In order to have a period that matches the Earth's rotation, a satellite must be in a circular orbit, and 42,164 km from the center of the Earth.
But that's not quite enough to make sure that it always stays over the same point on the Earth's surface (and appears motionless in the sky). For that to happen, the satellite's orbit has to be directly over the Equator.
The Moon has nothing to do with any of this.