AE = AC = 4
m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)
m<BAE = 150 (= 60 + 90)
Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.
m<AEB + m<ABE + m<BAE = 180
m<AEB + m< ABE + 150 = 180
m<AEB + m<AEB = 30
m<AEB = 15
In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.
We can use the law of sines to find BE.
BE/(sin 150) = 4/(sin 15)
BE = (4 sin 150)/(sin 15)
BE = 7.727
Answer:
x is 3
Step-by-step explanation:
6 (x + 1) = 24
6 (x) + 6(1) = 24
6x + 6 = 24
Subtract 6 on both sides
6x + 6 - 6 = 24 - 6
6x + 0 = 18
6x = 18
x = 18/6
x = 3
<u>it</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>trinomial</u><u> </u><u>polynomi</u><u>al</u><u> </u><u>because</u><u> </u><u>it contains </u><u>3</u><u> </u><u>terms</u><u> </u><u>with</u><u> </u><u>fundamen</u><u>tal</u><u> </u><u>signs</u><u>.</u><u> </u>
<u>hope</u><u> </u><u>it</u><u> </u><u>helps</u><u> </u><u>you</u>
Answer:
1) 49/10 and 490/100
2) 49/1000
Step-by-step explanation: