Answer:
The angular acceleration α = 14.7 rad/s²
Explanation:
The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod and L = length of rod = 4.00 m. α = angular acceleration of rod
Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.
So Iα = Wr
Substituting the value of the variables, we have
mL²α/12 = mgL/2
Simplifying by dividing through by mL, we have
mL²α/12mL = mgL/2mL
Lα/12 = g/2
multiplying both sides by 12, we have
Lα/12 × 12 = g/2 × 12
αL = 6g
α = 6g/L
α = 6 × 9.8 m/s² ÷ 4.00 m
α = 58.8 m/s² ÷ 4.00 m
α = 14.7 rad/s²
So, the angular acceleration α = 14.7 rad/s²
If the distance between two charges is halved, the electrical force between them increases by a factor 4.
In fact, the magnitude of the electric force between two charges is given by:
where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We see that the magnitude of the force F is inversely proportional to the square of the distance r. Therefore, if the radius is halved:
the magnitude of the force changes as follows:
so, the force increases by a factor 4.
We use the work formula to solve for the unknown in the problem. The formula for work is expressed as the product of the net force and the distance traveled by the object. We were given both the force and the distance so we can solve work directly.
Work = 250 N x 50 m = 12500 J
Thus, the answer is C.