Given:
m = 0.240 kg = 240 g, the mass of O₂
V = 3.10 L = 3.10 x 10⁻³ m³, the volume
Because the molar mass of oxygen is 16, the number of moles of O₂ is
n = (240 g)/(2*16 g/mol) = 7.5 mol
As an ideal gas,
p*V = nRT
or
V = (nRT)/p
where R = 8.314 J/(mol-K)
When
p = 0.910 atm = (0.910 atm) * (101325Pa/atm) = 92205.75 Pa
T = 27 °C = (27 + 273) K = 300 K
then the volume is
V = (0.2029 m³)*(10³ L/m³) = 202.9 L
Answer: 203 liters
Answer:
magma
Explanation:
I wanna think that that's right if it's not in so sorry but I'm pretty sure it's magma
Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:
lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:
To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):
=
∴NOTE: Graph is attached