The balanced equation for the neutralisation reaction is as follows
2H₃PO₄ + 3Mg(OH)₂ --> Mg₃(PO₄)₂ + 6H₂O
stoichiometry of H₃PO₄ to H₂O is 2:6
number of H₃PO₄ moles reacted - 0.24 mol
if 2 mol of H₃PO₄ form 6 mol of H₂O
then 0.24 mol of H₃PO₄ forms - 6/2 x 0.24 = 0.72 mol of H₂O
therefore 0.72 mol of H₂O are formed
Answer:
Repeated SN2 reactions occur leading to the formation of a racemic mixture
Explanation:
S-2-iodooctane is a chiral alkyl halide with an asymmetric carbon atom. The presence of an asymmetric carbon atom implies that it can rotate plane polarized light and thus lead to optical isomerism. The two configurations of the compound are R/S according to the Cahn-Prelong-Ingold system.
However, when S-2-iodooctane is treated with sodium iodide in acetone, repeated SN2 reactions occur since the iodide ion is both a good nucleophile and a good leaving group. Hence a racemic modification is formed in the system with time hence we end up with (±)- Iodooctane.
C; The Valence electrons spend more time around the atom of F
Answer:
blah blah blah blah blah blah blah blah blah blah blah
Answer:
Explanation:
Firstly, it should be noted that atomic number (number of protons) determines element. And the element with the atomic number 10 (10 protons) is Neon. Hence, Neon-10 (₁₀Ne) is the answer.
Note that sodium has an atomic number of 11. Also, number of protons is usually equal to the number of electrons in neutral atoms, this is because the total number of positive particles (protons) must be equal to the total number of negative particles (electrons) to give a neutral atom.