The formula for water is H2O so there would have to be two Hyrdogens and one oxygen. Therefore it would be 4g of Hydrogen and 16g of Oxygen leaving you with 20g.
The answer is D.
Hope this helps :) ~
Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
Hi! Well the formula of kinetic energy is Ke = 0.5 x M x V^2
0.5 x 0.5 x 10^2
0.25 x 20
5 J (joule)
Answer: Every enzyme has a specific name that can give us insight into the specific reaction that that enzyme can catalyze. We divide them into six different categories.
1) Oxidoreductase - includes two different types of reactions by transferring electrons from either molecule A to B or vice versa. It is involved in oxidizing electrons away from a molecule.
2) Hydrolase - uses water to divide a molecule into two other molecules.
3) Transferase - you move some functional group X from molecule B to molecule A
4) Ligase - catalyzes reactions between two molecules, A and B, that are combining to form a complex between the two. (example: DNA replication)
5) Lyase - divides a molecule into two other molecules without using water and without reducing or oxidation
<u>Answer:</u>
211.9 J
<u>Explanation:</u>
The molecules of water release heat during the transition of water vapor to liquid water, but the temperature of the water does not change with it.
The amount of heat released can be represented by the formula:
where = heat energy, = mass of water and = latent heat of evaporation.
The latent heat of evaporation for water is and the mass of the water is .
The amount of heat released in this process is:
211.9 J