Answer:
How does newtons first two laws of motion apply to the toy car?
Explanation:
Answer:
The coefficient of static friction between the box and floor is, μ = 0.061
Explanation:
Given data,
The mass of the box, m = 50 kg
The force exerted by the person, F = 50 N
The time period of motion, t = 10 s
The frictional force acting on the box, f = 30 N
The normal force on the box, η = mg
= 50 x 9.8
= 490 N
The coefficient of friction,
μ = f/ η
= 30 / 490
= 0.061
Hence, the coefficient of static friction between the box and floor is, μ = 0.061
To reach a vertical height of 13.8 ft against gravity, which has an acceleration of 32 ft/s^2, the required vertical speed can be calculated from the equation:
vi^2 - vf^2 = 2*g*h
Given that it has vf = 0 (it is not moving vertically at its maximum height), g = 32, and h = 13.8, we can solve for vi:
vi^2 = 29.72 ft/s
This is only its vertical speed, so this is equivalent to its original speed multiplied by the sine of the angle:
29.72 ft/s = (v_original)*(sin 42.2<span>°</span>)
v_original = 44.24 ft/s
Converting to m/s, this can be divided by 3.28 to get 13.49 m/s.