Complete question is;
Does the galvanometer deflect to the left or the right when
a) the magnet is being pushed in
b) the magnet is being pulled out
c) the magnet is being held steady?
Answer:
Option A - when the magnet is being pulled out
Explanation:
Faraday’s law of electromagnetic induction states that: “Voltage is induced in a circuit whenever relative motion exists between the conductor and the magnetic field, and the magnitude of the voltage will be proportional to the rate of change of the flux”.
Now, applying it to the question, When the magnet is moved towards the sensitive center of the galvanometer and then pulled out, the needle of the galvanometer will deflect away from its center position in one direction only but when it is held steady, the needle of the galvanometer will return back to zero.
Answer:
This reaction is of the spontaneous decomposition of hydrogen peroxide down into water and oxygen. Add 2 molecules of hydrogen peroxide and 2 molecules of water. Since oxygen is naturally diatomic, the total number of atoms of each element is now the same on both sides of the equation so it is balanced.
3]Explanation: This reaction is of the spontaneous decomposition of hydrogen peroxide down into water and oxygen. Add 2 molecules of hydrogen peroxide and 2 molecules of water. Since oxygen is naturally diatomic, the total number of atoms of each element is now the same on both sides of the equation so it is balanced.
4]Two moles of hydrogen peroxide H2O2 decomposes to produce two moles of water H2O and one mole of oxygen gas O2(g) , which then bubbles off
D) Both A and B.
Francisco Redi must use 1)a covered, unrefrigerated meat and 2) an uncovered, refrigerated meat to experiment and test his hypothesis that maggots came from flies rather than from meat.
Answer:
0.488 m
Explanation:
If θ be the angle ladder makes with the plane
cos θ = 1.2 / 5
Tan θ = 4.04
Let the height a person of weight 600 N can climb be h from the ground .
Distance from the base point where ladder touches the floor = h / tanθ
= h / 4.04
Total reaction force = total downward force
R = 200 + 600
800 N
Frictional force = μ R
= .2 x 800
= 160 N
Taking moment of force about the point on the ladder where it touches the floor and balancing them
200 x 1.2 x .5 + 600 x h / tanθ = μ R x 1.2 / tanθ ( reaction at the top point of ladder where it touches the wall is R₁ and
R₁ =μ R )
= 200 x 1.2 x .5 + 600 x h / tanθ = 160 x 1.2 / tanθ
120 - 600 h / 4.04 = 47.52
120 - 47.52 = 600 h / 4.04
72.48= 148.51 h
h = 0.488 m
=