Answer:
≈ 11.78 in
Step-by-step explanation:
The arc length is calculated as
arc = circumference of circle × fraction of circle
= 2πr × ( cancel 2π on numerator/ denominator )
= 15 ×
=
≈ 11.78 in ( to 2 dec. places )
Find, corrrect to the nearest degree, the three angles of the triangle with the given vertices. D(0,1,1), E(-2,4,3), C(1,2,-1)
Sholpan [36]
Answer:
The three angles of the triangle given above are 23, 73 and 84 correct to the nearest degree. The concept of dot product under vectors was applied in solving this problem. The three positions forming the triangle were taken as positions vectors. The Dot product also known as scalar product is a very good way of finding the angle between two vectors. ( in this case the sides of the triangle given above). Below is a picture of the step by step procedure of the solution.
Step-by-step explanation:
The first thing to do is to treat the given positions in space as position vectors which gives us room to perform vector manipulations on them. Next we calculate the magnitude of the position vector which is the square root of the sun of the square of the positions of the vectors along the three respective axes). Then we calculate the dot product. After this is calculated the angle can then be found easily using formula for the dot product.
Thank you for reading this and I hope it is helpful to you.
Peter reflecting trapezoid ABCD across the y-axis would not change the degree measurement of angle A
The degree measurement of angle A is 115 degrees
<h3>How to determine the degree measurement of angle A?</h3>
From the question, we have:
A = 115 degrees
B = 65 degrees
The transformation is a reflection across the y-axis
Reflection is a rigid transformation; and it does not change the angle measure or side lengths.
After the transformation; we have:
A = 115 degrees
B = 65 degrees
Hence, the degree measurement of angle A is 115 degrees
Read more about transformation at:
brainly.com/question/4289712