Answer:
Step-by-step explanation:
1. Lets find the inverse function for function f(x)=2*x/3-17
To do that first express x through f(x):
2*x/3= f(x)+17
2*x=(f(x)+17)*3
x=(f(x)+17)*3/2 done !!! (1)
Next : to get the inverse function from (1) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=(x+17)*3/2 or f'(x)=3*(x+17)/2
This is function is No4 in our list. So f(x)=2*x/3-17 should be moved to the box No4 ( on the bottom) of the list.
2. Lets find the inverse function for function f(x)=x-10
To do that first express x through f(x):
x= f(x)+10
x=f(x)+10 done !!! (2)
Next : to get the inverse function from (2) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x+10
This is function is No3 in our list. So f(x)=x-10 should be moved to the box No3 ( from the top) of the list.
3.Lets find the inverse function for function f(x)=sqrt 3 (2x)
To do that first express x through f(x):
2*x= f(x)^3
x=f(x)^3/2 done !!! (3)
Next : to get the inverse function from (3) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x^3/2
This is function No2 in our list. So f(x)=sqrt 3 (2x) should be moved to the box No2 ( from the top) of the list.
4.Lets find the inverse function for function f(x)=x/5
To do that first express x through f(x):
x=f(x)*5 done !!! (4)
Next : to get the inverse function from (4) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x*5 or f'(x)=5*x
This is function No1 in our list. So f(x)=x/5 should be moved to the box No1 ( on the top) of the list.