Answer:
Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,
Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that
Therefore the final kinetic energy is 3600MJ
If you try to fit the edges of both continents than they should somewhat fit each other like puzzle pieces
Answer: The given statement is false.
Explanation:
According to Newton's third law of motion, every action has an equal and opposite reaction. So, when we apply force in one direction on an object then the object also applies a force in the opposite direction.
Hence, it is true that two forces in each pair of forces act in opposite directions.
For example, when we push a wooden box of 20 kg in the forward direction then the box will also apply a force in the opposite direction.
But the statement two forces in each pair can either both act on the same body or they can act on different bodies is false.
30 Grams would be your answer (I took the test and got it right)