Answer:
Nitrates are oxidising agents
Answer:
164.3g of NaCl
Explanation:
Based on the chemical equation:
CaCl2 + 2NaOH → 2NaCl + Ca(OH)2
<em>where 1 mole of CaCl2 reacts with 2 moles of NaOH</em>
To solve this question we must convert the mass of CaCl2 to moles. Using the chemical equation we can find the moles of NaCl and its mass:
<em>Moles CaCl2 -Molar mass: 110.98g/mol-</em>
156.0g CaCl₂ * (1mol / 110.98g) = 1.4057 moles CaCl2
<em>Moles NaCl:</em>
1.4057 moles CaCl2 * (2mol NaCl / 1mol CaCl2) = 2.811 moles NaCl
<em>Mass NaCl -Molar mass: 58.44g/mol-</em>
2.811 moles NaCl * (58.44g / mol) = 164.3g of NaCl
Charge of nucleus is always positive whether it is element or isotope.
Answer:
Explanation:
The atomic radius of elements are used to estimate the sizes of elements. The atomic radius is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state of metals.
To solve this problem we will obtain the atomic radius values of the given elements from a standard atomic radius table;
Si 111 pm
P 98 pm
Cl 79 pm
S 87pm
pm = picometer
We see that chlorine has the least atomic radius
Answer:
Oxide of M is and sulfate of
Explanation:
0.303 L of molecular hydrogen gas measured at 17°C and 741 mmHg.
Let moles of hydrogen gas be n.
Temperature of the gas ,T= 17°C =290 K
Pressure of the gas ,P= 741 mmHg= 0.9633 atm
Volume occupied by gas , V = 0.303 L
Using an ideal gas equation:
Moles of hydrogen gas produced = 0.01225 mol
Moles of metal =
So, 8.3333 mol of metal M gives 0.01225 mol of hydrogen gas.
x = 2.9 ≈ 3
Formulas for the oxide and sulfate of M will be:
Oxide of M is and sulfate of .