Answer:
The probability that our guess is correct = 0.857.
Step-by-step explanation:
The given question is based on A Conditional Probability with Biased Coins.
Given data:
P(Head | A) = 0.1
P(Head | B) = 0.6
<u>By using Bayes' theorem:</u>
We know that P(B) = 0.5 = P(A), because coins A and B are equally likely to be picked.
Now,
P(Head) = P(A) × P(head | A) + P(B) × P(Head | B)
By putting the value, we get
P(Head) = 0.5 × 0.1 + 0.5 × 0.6
P(Head) = 0.35
Now put this value in , we get
Similarly.
Hence, the probability that our guess is correct = 0.857.
4 - 1/x (16)-1/x 2
4x-18/x
Answer:
good for the farmer
Step-by-step explanation:
Answer:
dA/dt = k1(M-A) - k2(A)
Step-by-step explanation:
If M denote the total amount of the subject and A is the amount memorized, the amount that is left to be memorized is (M-A)
Then, we can write the sentence "the rate at which a subject is memorized is assumed to be proportional to the amount that is left to be memorized" as:
Rate Memorized = k1(M-A)
Where k1 is the constant of proportionality for the rate at which material is memorized.
At the same way, we can write the sentence: "the rate at which material is forgotten is proportional to the amount memorized" as:
Rate forgotten = k2(A)
Where k2 is the constant of proportionality for the rate at which material is forgotten.
Finally, the differential equation for the amount A(t) is equal to:
dA/dt = Rate Memorized - Rate Forgotten
dA/dt = k1(M-A) - k2(A)
Answer:
5:53
Step-by-step explanation:
The original time would be 37 minutes before 6:30 so you would subtract 37 minutes from 6;30. So 6:30 minus 30 would be 6 and you would have 7 left over so 6:00 minus 7 minutes would be 5:53