Answer:
[∝] = +472
Explanation:
Specific rotation in a solution is defined as:
[∝] = ∝ / c×l
Where:
[∝] is specific rotation, ∝ is observed rotation (In degrees), c is concentration in g/mL and l is path length (In dm).
∝: +47.2°
c: 2.0g / 50mL = 0.04g/mL
l: 25cm × (1dm /10cm) = 2.5dm
Replacing:
[∝] = +47.2° / 0.04g/mL×2.5dm = <em>+472</em>
I hope it helps!
Answer:- B: is the right answer.
Solution:- The balanced equation is:
We have been given with 8.75 grams of oxygen and asked to calculate the grams of hydrogen needed to react with given grams of oxygen according to the balanced equation.
From balanced equation, 1 mole of oxygen reacts with 2 moles of hydrogen.
So, let's convert grams of oxygen to moles and multiply it by the mole ratio to calculate the moles of hydrogen that are easily converted to grams on multiplying by it's molar mass.
The complete set up looks as:
=
Hence, the right option is B: .
Answer :
B
!!!!!!!!!!!!!!!
Answer:
An ion is defined as an atom or molecule that has gained or lost one or more of its valence electrons, giving it a net positive or negative electrical charge.
Explanation:
I am here zinda -_+...
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate