Answer:
a. Let us consider that L is responsible for late and l is responsible for early. From the mentioned data, it can be concluded that allele L or late is dominant over early. By crossing plants 1 and 4 we get the expected ratio of 3: 1, which shows that it follows Mendel's law of dominant.
b. The genotype of all the four plants are:
1st plant = Ll
2nd plant = ll
3rd plant = LL
4th plant = Ll
c. If the plant 1 is self-fertilized then the expected progeny will be 3 (late): 1 (early).
In case if the 2nd plant is self-fertilized, the expected progeny will be only early.
In case if the 3rd plant is self-fertilized, the expected progeny will be only late.
In case if the 4th plant is self-fertilized, the expected progeny will be 3 (late): 1 (early).
Answer:
<u>stonewort, and many green algae such as the Spirogyra.</u>
Explanation:
- As it was believed that the land algae were believed to be evolved from the stonewort plant and the blue-green algae like the cyanobacteria and the spirogyra that colonized the lands some 500 mn years ago was a freshwater alga.
- After which the first land plants occur about 470 million years ago, and they were in the form s of moss and liverworts of the vascular in origin.
C because if there isn’t enough of something, more can be added but if there is max capacity, nothing can be added
Answer:
Q(0) = 0C, Q(1) = 264nC, Q(2) = 952C Q(3) = 2088nC, Q(4) = 3696C Q(5) = 5800nC
Explanation:
I = 4t³ + 200t² + 60t
But charge of an object =》 Q = IT
Charge of an object is the product of the current and the time in which the current passes through the membrane.
When t = 0
Q = 4(0)³ + 200(0)² + 60(0) = 0C
When t = 1
Q = 4(1)³ + 200(1)² + 60(1) = 264nC
When t = 2
Q = 4(2)³ + 200(2)² + 60(2) = 952nC
When t= 3
Q = 4(3)³ + 200(3)² + 60(3) = 2088nC
When t= 4
Q = 4(4)³ + 200(4)² + 60(4) = 3696nC
When t = 5
Q = 4(5)³ + 200(5)² + 60(5) = 5800nC