m∠EFG = 59°
Solution:
Given ∠HGI = 33°, ∠GIH = 88°
In ΔIHG,
Sum of the angles of the triangle = 180°
⇒ ∠HGI + ∠GIH + ∠IHG = 180°
⇒ 33° + 88° + ∠IHG = 180°
⇒ ∠IHG = 180° – 121°
⇒ ∠IHG = 59°
EF || IH and FH is a transversal.
<u>Alternative interior angle theorem:
</u>
If two parallel lines cut by a transversal then their alternative interior angles are congruent.
By alternative interior angle theorem,
∠EFG = ∠IHG
∠EFG = 59°
Hence the measure of angle EFG = 59°.