Answer:
The answer to your question is 0.4 moles of Oxygen
Explanation:
Data
Octane (C₈H₈)
Oxygen (O₂)
Carbon dioxide (CO₂)
Water (H₂O)
moles of water = ?
moles of Oxygen = 1
Balanced chemical reaction
C₈H₈ +10O₂ ⇒ 8CO₂ + 4H₂O
Reactant Element Products
8 C 8
8 H 8
20 O 20
Use proportions to solve this problem
10 moles of Oxygen ----------------- 4 moles of water
1 mol of Oxygen ------------------ x
x = (4 x 1) / 10
x = 4 / 10
x = 0.4 moles of water
Answer:
6s
Explanation:
Barium is in group 2 of the s block and is in period 6.
<span>
Low pH means the solution is acidic; if the solution is acidic, that
means that there are hydronium ions in solution (H3O+). For example,
hydrochloric acid dissolves into H+ ions and Cl- ions, and the H+ ions
rreact with water like this:
H+ + H2O --> H3O+
If you want to get mathematical, pH is defined as the negative log of the concentration of hydronium ions.
Thus, if there are a lot of hydronium ions, the solution will have a low, or acidic, pH. Hope this helps^-^</span>
Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.
There are 34 g of oxygen in the container.
We can use the<em> Ideal Gas Law</em> to solve this problem.
But , so
and
STP is 0 °C and 1 bar, so