Answer:5.4 g / 13.6 g *100
Explanation:Its is the correct answer
Answer: After 4710 seconds, 1/8 of the compound will be left
Explanation:
Using the formulae
Nt/No = (1/2)^t/t1/2
Where
N= amount of the compound present at time t
No= amount of compound present at time t=0
t= time taken for N molecules of the compound to remain = 4710 seconds
t1/2 = half-life of compound = 1570 seconds
Plugging in the values, we have
Nt/No = (1/2)^(4710s/1570s)
Nt/No = (1/2)^3
Nt/No= 1/8
Therefore after 4710 seconds, 1/8 molecules of the compound will be left
Answer:
The answer to your question is: letter D.
Explanation:
Noble gases are located in group VIIIA of the periodic table, this means that they have 8 eight electrons in their outermost shell.
Due to this characteristic, they are stable and do not react with other elements.
a. 1s22s22p4 The outermost shell of this electron configuration has 6 electrons, then this element has 6 electrons not 8. This configuration is of an element of the group VIA.
b. [Ne]2s22p2 The outermost shell of this element has 4 electrons, so this is not the configuration of a noble gas.
c. [Ar] 3s1 This element only has one electron in its outermost shell, so this is the electron configuration of an alkaline metal.
d. 1s22s22p6 This element has 8 electrons in its outermost shell, so this is the electron configuration of a noble gas.
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ * = 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).