Answer:A student shoots a spitball with a perfectly horizontal velocity of 9.7 m/s from a height of 1.8 meters. How long will it take for the spitball to hit the ground?
(ignore air resistance) (include units and correct number of significant figures)
Explanation:La respuesta es porque esa es la respuesta, la respuesta al número es 9.7 1.8 Divide =53.888
Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F =
Bqv =
or Eq =
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
20 meters.
Explanation:
In the graph, the x-axis (the horizontal axis) represents the time, while the y-axis (the vertical axis) represents the distance.
If we want to find the distance covered in the first T seconds, you need to find the value T in the horizontal axis.
Once you find it, we draw a vertical line, in the point where this vertical line touches the graph, we now draw a horizontal line. This horizontal line will intersect the y-axis in a given value. That value is the total distance travelled by the time T.
In this case, we want to find the total distance that David ran in the first 4 seconds.
Then we need to find the value 4 seconds in the horizontal axis. Now we perform the above steps, and we will find that the correspondent y-value is 20.
This means that in the first 4 seconds, David ran a distance of 20 meters.
Answer:
Well its what makes a salad taste good.