Answer:
The answer is ""
Explanation:
Please find the complete question in the attached file.
Equation:
at
at equilibrium
The balanced chemical reaction is written as :
Na2CO3<span> + 2HCl === 2NaCl + H2O + CO2
</span>
We are given the amount of NaCl to be produced from the reaction. This will be the starting point for the calculations. We do as follows:
120 g NaCl ( 1 mol / 58.44 g) ( 1 mol Na2CO3 / 2 mol NaCl)( 105.99 g / 1 mol ) = 1108.82 g Na2CO3 needed
The answer is; liquid phase
The characteristics described in the question are those of a liquid. The forces between liquid particles are weaker than the forces between solid particles because the particles are further apart. The particles are not held in a fixed position in the structure hence it can flow and take the shape of the container in which it is in.
Answer:
The answer to your question is: CO2
Explanation:
The information given is correct, Covalent bonds occur when atoms share one or more pairs of electrons, but also, covalent bonds occur with nonmetals, then,
a.NaCl This elements form an ionic bond, so this option is incorrect.
b.Cl2 Here there are two non metals but the form one single covalent bond, so this option is incorrect.
c.CO2 Carbon dioxide forms 2 double covalent bonds.
d.NH3 ammonium only forms single covalent bonds
Answer:
23.8g of sodium phosphate are formed
Explanation:
Based on the reaction of sodium, Na, with phosphoric acid, H₃PO₄:
3Na + H₃PO₄ → Na₃PO₄ + 3/2 H₂
<em>3 moles of sodium produce 1 mole of sodium phosphate</em>
<em />
To solve this question we must find the moles of sodium in 10g. Using the chemical reaction we can find the moles -And the mass- of sodium phosphate produced, as follows:
<em>Moles Na -Molar mass: 22.99g/mol-</em>
10g * (1mol / 22.99g) = 0.435 moles Na
<em>Moles Na₃PO₄:</em>
0.435 moles Na * (1mol Na₃PO₄ / 3mol Na) = 0.145 moles Na₃PO₄
<em>Mass Na₃PO₄ -Molar mass: 163.94g/mol-</em>
0.145 moles Na₃PO₄ * (163.94g/mol) =
<h3>23.8g of sodium phosphate are formed</h3>