I’m trying to get things expanded graph explanation sorry
Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi
Explanation:
When the wire is connected to a battery, the compass needle moves and changes its position. This happens because the needle magnetizes the copper wire, thus, creating a force.
While the current in the wire produces a magnetic field and exerts a force on the needle. The insulation on the wire becomes energized and exerts a force on the needle. Hence, the compass needle moves and changes its position.
Answer:
a)1.37 s
b)∞ ( Infinite)
Explanation:
Given that
L= 47 cm ( 1 m =100 cm)
L= 0.47 m
a)
On the earth :
Acceleration due to gravity = g
We know that time period of the simple pendulum given as
Here
Now by putting the values
T=1.37 s
b)
Free falling elevator :
When elevator is falling freely then
( This is case of weightless motion)
Therefore
T=∞ (Infinite)
Answer:
6.77 m/s
Explanation:
Acceleration = Force/mass;
The block is accelerated by 13/6.4 m/s^2 for 2.1s from an initial velocity of 2.5m/s.
Applying the equation of motion:
Vf=Vi + at
Where Vf is the final velocity, Vi is the initial velocity, a is the acceleration and t is the time for which the object accelerates.
<h3>Vf= 2.5 + ((13/6.4)*2.1);</h3>